_
Ω
$\overline{}$
_
Ø
_
N
0
•
Q
_
•
-
7
\supset
0
0
3
`
3
>
>
$\overline{}$
$\overline{}$
_
Ω.
-
÷
-
7
_

STUDY MODULE DESCRIPTION FORM					
		Code 1010842121010832262			
Field of study Electronics and Telecommunications	Profile of study (general academic, practical) general academic	Year /Semester			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
Multimedia and Consumer Electronics	Polish	obligatory			
Cycle of study:	Form of study (full-time,part-time)				
Second-cycle studies	Second-cycle studies full-time				
No. of hours		No. of credits			
Lecture: 2 Classes: 2 Laboratory: -	Project/seminars:	- 5			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
other	m field				
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		5 100%			
Technical sciences		5 100%			

Responsible for subject / lecturer:

prof. dr hab. inż. Ryszard Stasiński, prof. nadzw. email: rstasins@et.put.poznan.pl tel. +48 61 665 3839 Wydział Elektroniki i Telekomunikacji ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Has extended, in-depth knowledge of those branches of mathematics which are used in formulating and solving problems in electronic and telecommunications - K2_W00 Is conversant with numerical methods used in electronics and telecommunication - K2_W07			
2	Skills	Is able to select adequate numerical methods and simulation methods to solve typical tasks related to analysis, design and optimization of systems and computational tasks in telecommunication - K2_U09			
3	Social competencies	Is aware of the limitations of his/her current knowledge and skills; is committed to lifelong learning - K2_K04			

Assumptions and objectives of the course:

Learning of theoretical and practical knowledge linked with advanced digital signal processing techniques, e.g. design and analysis of time-variant systems (adaptive), multirate systems, and advanced methods of spectral analysis.

Study outcomes and reference to the educational results for a field of study

Knowledge:

1. Has a systematic, detailed knowledge, together with necessary mathematical background, of advanced methods of digital signal processing - [K2_W09]

Skills:

- 1. Is able to make typical calculations and use appropriate software to design and analyze the operation of advanced digital signal processing circuits [K2_U12]
- 2. Is able to design, construct, program and test complex, technologically advanced electronic circuits and systems, especially for telecommunication devices and systems and networks [K2_U15]

Social competencies:

- 1. Is aware of the limitations of his/her current knowledge and skills; is committed to lifelong learning [K2_K04]
- 2. Is aware of the necessity to approach solving technical problems with responsibility and professionalism [K2_K05]

Assessment methods of study outcomes

Final exam following lectures - written answers to 10 questions covering lecture material Colloquia during exercise classes, two - solution of few exercises

Knowledge verification on the fly during classes

Course description

Prediction: Wold model, ARMA, AR and MA models, linear predictor, lattice structure, normal equations, Levinson-Durbin and Schur algorithms, Wiener FIR and IIR filters. Identification and modeling: least-squares (LS) solutions for AR, MA and ARMA models. Adaptive filters: applications, gradient filters - LMS and its analysis, recursive LS filters (RLS) - Kalman filter, its improvements, various versions of fast RLS algorithms. Multirate systems: idea, interpolator and decimator, poliphase structures, exact and approximate solutions to sampling rate conversion, multiplierless modulation and demodulation, filter banks - uniform, critically sampled, perfectly and nearly-perfectly reconstructing, QMF filters, time-frequency analysis - spectrogram, Gabor transformation, wavelet transforms. Advanced methods of spectrum estimation: non-parametric methods (extension), parametric methods - Yule-Walker, Burg and unconstrained AR methods, methods based on eigenvector analysis - Pisarenko approach, MUSIC and ESPRIT.

Basic bibliography:

1. T. Zieliński, "Cyfrowe przetwarzanie sygnałów, od teorii do zastosowań", WKŁ 2005.

Additional bibliography:

1. J.G. Proakis, D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", 4 ed., Prentice Hall, 2007.

Result of average student's workload

Activity	Time (working hours)
1. Lectures	30
2. Preparation to exam	40
3. Exam	2
4. Classes	30
5. Preparation to classes	20
6. Preparation to colloquia	15
7. Consultations	3

Student's workload

Source of workload	hours	ECTS
Total workload	125	5
Contact hours	65	3
Practical activities	65	3